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Abstract—In motor imagery brain-computer interfaces (BCIs),
the symmetric positive-definite (SPD) covariance matrices of
electroencephalogram (EEG) signals carry important discrimi-
native information. In this paper, we intend to classify motor
imagery EEG signals by exploiting the fact that the space of
SPD matrices endowed with Riemannian distance is a high-
dimensional Riemannian manifold. To alleviate the overfitting
and heavy computation problems associated with conventional
classification methods on high-dimensional manifold, we pro-
pose a framework for intrinsic sub-manifold learning from a
high-dimensional Riemannian manifold. Considering a special
case of SPD space, a simple yet efficient bilinear sub-manifold
learning (BSML) algorithm is derived to learn the intrinsic sub-
manifold by identifying a bilinear mapping that maximizes the
preservation of the local geometry and global structure of the
original manifold. Two BSML-based classification algorithms are
further proposed to classify the data on a learned intrinsic
sub-manifold. Experimental evaluation of the classification of
EEG revealed that the BSML method extracts the intrinsic sub-
manifold approximately 5× faster and with higher classification
accuracy compared with competing algorithms. The BSML also
exhibited strong robustness against a small training dataset,
which often occurs in BCI studies.

Index Terms—Electroencephalography (EEG), motor imagery,
classification algorithms, information geometry, covariance ma-
trices, dimensionality reduction.

I. INTRODUCTION

BRAIN-computer interfaces (BCIs) provide a new way
to translate human intentions into external device com-

mands. BCIs can be used as communication tools for the
disabled or as man-machine interface games for healthy people
[1]. Many BCI systems have been designed to exploit different
types of electroencephalogram (EEG) modalities. In this paper,
we will focus on a motor imagery BCI system, in which a
trained subject can voluntarily produce an EEG by imagining
movements of different parts of the body. Two of the major
challenges in motor imagery BCIs are the efficient extraction
and correct classification of EEG features.

For the classification of motor imagery signals, common
spatial pattern (CSP) [2] is used most frequently as the
spatial filter for feature extraction. Taking left/right hand motor
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imagery as an example, CSP maximizes the variance of one-
hand trials while minimizing the variance of the others. Covari-
ance matrices are utilized to obtain the spatial filter. Because
the space of symmetric positive-definite (SPD) covariance
matrices endowed with Riemannian distance is a Riemannian
manifold [3], EEG classification on high-dimensional Rie-
mannian manifolds has recently received increasing attention
to improve the performance of the EEG classification [4],
[5]. For example, in [5], two algorithms are proposed. One
algorithm compares the minimum Riemannian distance be-
tween an unlabeled data point and the Riemannian means of
labeled data points using the concept of Riemannian geodesic
distance. The other algorithm maps all data points in the
Riemannian manifold into its tangent space, which is known
as the best hyper-plane [6] for classification, and then applies
classification methods developed in Euclidean space to the
tangent space.

In general, classification in high-dimensional space is sub-
ject to overfitting and bias in statistical estimations, particu-
larly for a small training dataset [7], which often occurs in BCI
research. The computational cost of these algorithms is another
serious limitation. Dimensionality reduction is a promising
means of addressing these problems. The goal of dimension-
ality reduction is to identify a more compact representation of
the high-dimensional space. One of the most important non-
linear dimensionality reduction techniques, manifold learning
[8], learns the potential intrinsic low-dimensional embedding
of the high-dimensional data space. Most manifold learning
algorithms attempt to obtain low-dimensional embedding such
that proximal data points in high-dimensional space remain
proximal and distant data points in high-dimensional space
remain distant.

Two canonical approaches in manifold learning are globally
mapping methods and locally preserving methods. Global
methods, such as isometric feature mapping (Isomap) [9],
diffusion maps [10] and Riemannian manifold learning (RML)
[11], tend to identify the global representations of high-
dimensional space by preserving the geodesic distance, which
is the shortest distance between data points on manifold. One
of the earliest global methods, Isomap, uses the shortest path
in the graph to approximate the real geodesic, and then uses
a multi-dimensional scaling (MDS) [12] algorithm to reduce
dimensionality while preserving the approximated geodesic
distance. Because the distance between nearby points is calcu-
lated as the Euclidean distance, local information of neighbors
is lost for sparsely sampled data. Many extensions of Isomap
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have been proposed to address this limitation, such as incre-
mental Isomap [13], conformal Isomap and landmark Isomap
[14]. Diffusion maps [10] replaces the geodesic distance with
the diffusion distance and reduces the dimensionality by se-
lecting the first several non-trivial eigenvalues of the transition
probability matrix. RML [11] computes a Riemannian normal
coordinate chart using PCA projection and then represents the
data point in the low-dimensional normal coordinate chart
by solving a quadratically constrained linear least squares
problem. The low-dimensional representation is computed by
preserving radial geodesic distances and angles. Because the
shortest paths are exploited to approximate geodesic curves,
the RML may have a large error, particularly when the data
points are sparsely sampled.

By contrast, local methods, such as locally linear embedding
(LLE) [15], Laplacian eigenmaps [16], Hessian eigenmaps
[17], manifold charting [18], local tangent space alignment
(LTSA) [19] and adaptive manifold learning [20], attempt
to preserve the local information of high-dimensional space
based on the assumption that each data point and its neighbors
are homomorphic to an open subset of Euclidean space. One
type of local method is designed to preserve the relationship
among proximal data points. LLE [15] characterizes the local
geometry in the neighborhood of each data point by linear
reconstruction of the data point from its neighbors. Laplacian
eigenmaps [16] and Hessian eigenmaps [17] both seek a map
in which proximal points in the high-dimensional space are
mapped close together in the low-dimensional embedding.
These local methods use the eigenfunctions of different oper-
ators, the Laplace Beltrami operator and Hessian matrix. The
other type of local method is designed to obtain more simple
coordinate systems. The manifold chart [18] decomposes the
sampled data space into locally linear low-dimensional patches
and merges these patches into a single low-dimensional co-
ordinate system. LTSA [19] identifies the tangent space for
each locally linear patch of manifold and then aligns those
tangent spaces to obtain a parameterization of manifold. An
extension of the LTSA algorithm, adaptive manifold learning
[20], modifies the minimization model in LTSA and adaptively
selects the neighbors of each data point. The local methods
capture information only from the local patch and ignore the
information of the global structure of data in processing.

Although many global and local methods have been pro-
posed to identify low-dimensional embedding, they are mainly
designed for a general manifold and few of these methods
use the information of the manifold from which the original
data were sampled. Without information on the geodesic
of the unknown manifold, most global methods learn the
low-dimensional embedding by approximating the geodesic
distance, which results in a representation bias. In many
applications of pattern recognition, the data can be represented
by covariance matrices, which are SPD matrices. Because the
space of the SPD matrices endowed with Riemannian distance
is a Riemannian manifold [3], in this paper, we focus on
examining a type of Riemannian manifold, in which the space
of SPD matrices is endowed with explicit geodesic distance.

Considering the space of SPD matrices in motor imagery
BCIs, we propose a novel dimensionality reduction method,
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Figure 1. Related work and proposed framework. a) the framework of
general manifold learning; b) classification on a high-dimensional Riemannian
manifold; c) the framework of Bilinear Sub-Manifold Learning, classification
on a low-dimensional sub-manifold.

bilinear sub-manifold learning (BSML). The main difference
between BSML and other manifold learning methods is that
BSML directly preserves the pairwise Riemannian geodesic
distance between data points instead of approximating the
geodesic distance, as shown in Fig. 1. Bilinear learning al-
gorithms have been recently proposed for BCI applications.
In motor imagery systems, popular bilinear methods include
discriminative filter bank CSP (DFBCSP) [21], which simulta-
neously optimizes the spatial and temporal filters, and the more
recent method of separable common spatio-spectral pattern
(SCSSP) [22], which seeks the spatio-spectral features by
matrix-variate Gaussian model. In particular, bilinear methods
are also used for event-related potential (ERP) classification
[23], [24], where the discriminant information of ERP signal
is obtained by learning a spatial matrix and a temporal matrix
collaboratively. Most of these studies have achieved great
success in BCI applications. However, the above bilinear
methods identify two projection matrices on Euclidean space
and ignore that the covariance matrix lies on a Riemannian
manifold. BSML algorithm learns two projection matrices
using Riemannian geometry.

The major contributions of this paper are threefold.
1) A novel BSML is proposed for dimensionality reduction

of the SPD matrices space in motor imagery BCIs.
Calculation of the intrinsic sub-manifold is formulated as
an eigenvalue problem. The sub-manifold is efficiently
extracted by minimizing the Riemannian geodesic dis-
tance loss between any pair of data points on the original
manifold and its intrinsic sub-manifold. Our method is
specifically designed for the space of SPD matrices, and
differs from the RML [11], which addresses arbitrary data
space. The BSML can be considered as an extension of
CSP on covariance matrices in measure of Riemannian
distance.

2) Two classification algorithms, minimum distance to sub-
manifold mean (MDSM) and tangent space of sub-
manifold (TSSM), are proposed to function on the ex-
tracted Riemannian sub-manifold. Higher classification
performance is obtained for motor imagery BCIs.

3) For small sample sizes, i.e., when the ratio of the number
of training samples to the number of features is small, the
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BSML algorithm can efficiently alleviate the overfitting
problem, as supported by experimental results.

The remainder of the paper is organized as follows. In Sec-
tion II, some basic concepts of SPD matrices space are briefly
reviewed. In Section III, we derive a framework for intrinsic
mapping for the problem of dimensionality reduction. Based
on this framework, we propose a simple method for intrinsic
sub-manifold learning for the SPD matrices space, i.e., the
BSML method. Two classification algorithms are proposed
on the intrinsic manifold. Extensive experimental results are
provided in Section IV to demonstrate the effectiveness of the
proposed method. Finally, some conclusions are provided in
Section V.

II. DATA MODEL AND BASIC CONCEPTS OF SPD
MATRICES SPACE

A. Data Model of BCI

The recorded EEG signal of motor imagery BCIs is a multi-
lag/multi-channel signal

X(t) = [x(t), ..., x(t+ L− 1)] ∈ RN×L (1)

where N and L indicate the number of channels and sampled
points, respectively. The vector x(t) = [x1(t), ..., xN (t)]

T ∈
RN is the snapshot vector. In motor imagery BCIs, the
second order statistical information of X(t) often provides
discriminative information for brain states. Among the second
order statistical information [25], the spatial covariance matrix
of EEG data is widely used in motor imagery BCIs [26]. In
this paper, the spatial covariance matrix of EEG data P(t),
which is represented by its sample covariance matrix (SCM),
is defined as

P(t) =
1

L− 1
X(t)XT (t). (2)

Generally, the classification of P(t) is always directly per-
formed in Euclidean space [27], where the Euclidean distance
of SCM is used. The SCM is a SPD matrix. Because the
space of SPD matrices endowed with Riemannian distance is
a differentiable Riemannian manifold, Riemannian geometry
can be used to analyze SCM. Many concepts and tools, such
as Riemannian distance, tangent space and Riemannian mean,
which are briefly reviewed in the following section, can be
readily applied in the classification of SCM.

B. Basic Concepts of SPD Matrices Space

Denoting the space of symmetric matrices

S(N) =
{

P ∈ RN×N ,P = PT
}

(3)

and the space of positive-definite matrices

P(N) =
{

P ∈ RN×N , uT Pu > 0, ∀u ∈ RN
}
, (4)

the space of SPD matrices is defined as

SPD(N) = S(N) ∩ P(N). (5)

The SPD matrix lies on a differentiable Riemannian manifold
[3]. Thus, many of the mathematical concepts defined in
Riemannian geometry can be applied to SPD(N).

The Riemannian distance δR(P1,P2) is the minimum length
of the curve connecting P1 and P2 on a Riemannian manifold
[27]. There are many possible mathematical definitions of the
Riemannian distance [28]. In this paper, we adopt the Rie-
mannian distance between two matrices P1,P2 ∈ SPD(N)
as [3]

δR(P1,P2) =
∥∥log(P1

−1P2)
∥∥
F
=

[
N∑
i=1

log2βi

] 1
2

(6)

where || · ||F is the Frobenius norm of a matrix and βi is
the i-th real eigenvalue of P1

−1P2. The Riemannian distance
poses three fundamental properties of metric space: positivity,
symmetry and triangle inequality [3]. One of the most impor-
tant properties of the Riemannian distance is the invariance of
linear transformation [3]

δR(P1,P2) = δR(WT P1W,WT P2W) (7)

where the transformation matrix W ∈ RN×N is invertible.
The tangent space, as a Euclidean space, is an important

space in the analysis of a Riemannian manifold. Before
defining the tangent space, we first introduce the logarithmic
mapping operator and exponential mapping operator

LogP(Pi) = Si = P
1
2 log(P− 1

2 PiP− 1
2 )P

1
2 ,

ExpP(Si) = Pi = P
1
2 exp(P− 1

2 SiP− 1
2 )P

1
2 .

(8)

LogP(·) is a mapping from the manifold to the tangent space
at P, whereas ExpP(·) is a mapping from the tangent space
at P to manifold. These two operators are a pair of one-
to-one mapping operators between the Riemannian manifold
and the tangent space. The logarithm log(P) and exponential
exp(P) of a SPD matrix P in (8) are defined as follows. If the
eigenvalue decomposition of P is P = Udiag(σ1, ...σn)UT ,
where σ1, ...σn are the eigenvalues of P and U is the eigen-
vector matrix, then log(P) = Udiag(log(σ1), ... log(σn))UT

and exp(P) = Udiag(exp(σ1), ... exp(σn))UT .
Because the tangent space TP(N) = {LogP(Pi),Pi ∈

SPD(N)} is a space of symmetric matrices, there are only
N(N + 1)/2 independent elements. We can find a minimal
representation of the tangent space TP(N) at P as a vector
space [6]

T (N) =
{

si = upper(P− 1
2LogP(Pi)P− 1

2 ) ∈ RN(N+1)/2
}
(9)

where upper(·) operator retains the upper triangular portion of
the symmetric matrix and vectorizes it.

An important property of the tangent space is that the
Riemannian distance from any point Pi to the point P can
be calculated as the Euclidean distance on the tangent space
at P [5]

δR(P,Pi) = ∥si − 0∥2 (10)

where si ∈ T (N) is the vector in tangent space corresponding
to Pi ∈ SPD(N). The Riemannian manifold and tangent
space are illustrated in Fig. 2.

The mean of SPD matrices plays an important role in
classification and is defined as the point PR ∈ SPD(N),
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Figure 2. An illustration of the Riemannian manifold and tangent space.

which has a minimum sum of the squared distances to all
SPD matrices in dataset C

PR = arg min
P∈SPD(N)

∑
Pi∈C

δ2R(P,Pi). (11)

In the literature [29], the mean PR is also referred to as the
Riemannian mean. Directly calculating the Riemannian mean
is not easy, and an alternative method is to calculate it using the
relationship between the Euclidean distance and Riemannian
distance [30]. While the Riemannian mean is calculated, the
tangent space at the Riemannian mean is the best hyperplane
in which the distance loss is minimal for classification [6].

III. PROPOSED METHODS

Similar to the classification on Euclidean space, the clas-
sification on the Riemannian manifold (see [31]) also suffers
from longstanding problems of high-dimensionality, such as
overfitting and bias in statistical estimations, particularly in
the case of a small sample setting. To address these problems,
we introduce a dimensionality reduction approach to identify
a low-dimensional intrinsic sub-manifold that maximizes the
preservation of the local geometry and global structure of the
original manifold.

A. Framework of Intrinsic Mapping

Suppose operator f is a smooth mapping that maps a
data point on a Riemannian manifold of N dimensions to a
Riemannian manifold of M dimensions:

f : ΩN → ΩM (N > M). (12)

If ΩM is a subset of ΩN , then ΩM is an embedded sub-
manifold of ΩN [28]. The embedded sub-manifold is modeled
locally on the standard embedding of RM into RN , identifying
RM with the subset {(x1, ...xM , xM+1, ...xN )|xM+1 = ... =
xN = 0} of RN .

With different choices of f , there exist many sub-manifolds.
Our target is to identify the intrinsic sub-manifold, which is the
sub-manifold that maximizes the preservation of the local ge-
ometry and global structure of the original manifold. Because
the local geometry and global structure can be represented
by the metric structure of the manifold, we define the intrinsic
mapping by minimizing the Riemannian geodesic distance loss

Figure 3. An illustration of the Riemannian manifold (larger one) and intrinsic
Riemannian sub-manifold (smaller one).

between any pair of data points on the original manifold and
its intrinsic sub-manifold as

fopt = argmin
f

∫
Ω

|δR(ρi, ρj)− δR(f(ρi), f(ρj))|dΩ (13)

where ρi is a point on the manifold and f(ρi) is the mapped
point on its sub-manifold. The sub-manifold learned from
(13) is defined as the intrinsic Riemannian sub-manifold, as
illustrated in Fig. 3.

With different types of original manifolds, the optimal
intrinsic mapping f of (13) has many variations, such as
complicated nonlinear mapping and linear mapping. In this
paper, considering the SPD matrices space, based on simple
geometric intuition and to facilitate implementation, we char-
acterize the intrinsic mapping operator f as a bilinear mapping
with mapping matrix Ws ∈ RM×N . Once P ∈ RN×N and
the mapping matrix Ws are given, we can directly obtain the
mapped SPD matrix, Pc = WsPWs

T ∈ RM×M . This mapped
SPD matrices space is also a differentiable Riemannian sub-
manifold [3].

The intrinsic mapping matrix Ws can be obtained by
minimizing the distance loss as

Wsopt = argmin
Ws

∑
Pi,Pj∈C

∣∣∣δR(Pi,Pj)− δR(WsPiWs
T ,WsPjWs

T )
∣∣∣

(14)
where C is the experimental dataset of matrices in SPD(N).

It should be noted that (14) is a non-convex problem and
is difficult to solve. In this paper, (14) is approximated as a
simple eigenvalue optimization problem.

B. Bilinear Sub-Manifold Learning Algorithm
Normally, (14) is an intractable problem and the optimal

solution is difficult to identify. In this section, considering the
two-class classification problem, i.e., left/right motor imagery
problem in BCI, the BSML algorithm is proposed to solve
(14) approximately. As shown in Appendix I, (14) can be
approximated as

Wsopt = argmin
Ws

∣∣∣δR(PR1,PR2)− δR(WsPR1Ws
T ,WsPR2Ws

T )
∣∣∣.

(15)
where PR1,PR2 are the Riemannian means of two-class

datasets
PR1 = argmin

P

∑
Pi∈C1

δ2R(P,Pi)

PR2 = argmin
P

∑
Pi∈C2

δ2R(P,Pi)
(16)
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and C1, C2 represent the datasets of class 1 and class 2, re-
spectively. Because the Riemannian mean generalizes naturally
to a finite set of SPD matrices, the approximated problem
(15) attempts to preserve Riemannian distance between the
Riemannian means of two-class datasets instead of the entire
set of data points.

As shown in Appendix II, we can identify an invertible
matrix W that jointly diagonalizes PR1,PR2 and satisfies

WPR1WT + WPR2WT = I. (17)

The corresponding eigenvalues λj1, λj2(j = 1, · · · , N) of the
diagonal matrices WPR1WT and WPR2WT are subject
to λj1 + λj2 = 1 [2], [32]. After obtaining the transfor-
mation matrix W, the mapping matrix Ws ∈ RM×N can be
constructed by choosing different combination of row vectors
from the transformation matrix W. According to the invariance
of linear transformation and the definition of the Riemannian
distance, the optimization problem (15) is expressed as

{λ}opt = argmin
{λi}

∣∣∣∣∣∣
√√√√ N∑

j=1

log2(
λj1

1− λj1
)−

√√√√ M∑
i=1

log2(
λi

1− λi
)

∣∣∣∣∣∣
(18)

where {λi, i ∈ [1,M ]} is subset of {λj1, j ∈ [1, N ]} . For
different dimensions M , the solution of (18) can be obtained
by choosing the first M eigenvalues that are far from 0.5.
Each combination of corresponding row vectors from the
transformation matrix W is a mapping matrix Ws ∈ RM×N .

The problem remaining here is the selection of the di-
mension M of the intrinsic sub-manifold. Similar to [9],
we estimate M from the elbow of the relative error of the
Riemannian distances before-and-after mapping for different
dimensions of sub-manifold. The relative error Er is defined
as

Er = 1−

(
δR
(
WsPR1Ws

T ,WsPR2Ws
T
)

δR (PR1,PR2)

)
. (19)

The intrinsic dimensionality is located at the largest curvature
of the error curve at which the error curve ceases to decrease
significantly with increasing dimensionality [9]. The pseudo-
code of the BSML is given in Algorithm 1.

Algorithm 1 Bilinear sub-manifold learning (BSML)
Input: The training SPD matrix samples PTr ∈ RN×N ;
Output: The optimal dimensionality Ms, and intrinsic

mapping matrix Ws ∈ RMs×N ;
1: Calculate the Riemannian means PR1, PR2 from the

training data as (16);
2: Calculate the N ×N normalization matrix W

(PR1 + PR2)
−1PR1 = WΣ1WT ,W ∈ RN×N (See Ap-

pend. II);
3: For different numbers M , select M eigenvalues {λi, i ∈

[1,M ]} far from 0.5 from {λj1, j ∈ [1, N ]}, and construct
mapping matrix Ws ∈ RM×N as the corresponding
submatrix of W;

4: Select the optimal dimensionality Ms of the intrinsic sub-
manifold based on the error curve (19);

C. Classification on the Intrinsic Riemannian Sub-manifold

Two classification algorithms, e.g., minimum distance to
Riemannian mean (MDRM) and tangent space linear discrim-
inant analysis (TS+LDA), have been proposed on the high-
dimensional Riemannian manifold by utilizing the concepts
of geodesic distance and tangent space [5]. The intrinsic sub-
manifold learned by BSML captures the information of high-
dimensional Riemannian manifold. Because classification on
the low-dimensional sub-manifold can alleviate the overfitting
and heavy computation problems, in this paper, we propose
two classification algorithms for the sub-manifold based on
MDRM and TS+LDA.

The first proposed algorithm is named minimum distance
to sub-manifold mean (MDSM) and is based on MDRM [5].
Once training datasets are mapped to the Ms ×Ms intrinsic
sub-manifold by the BSML algorithm, the Riemannian mean
of each class on the intrinsic sub-manifold can be calculated.
For the testing SPD matrices mapped onto the intrinsic sub-
manifold, the minimum distance of the testing matrix to all
Riemannian means is calculated and the label of the testing
matrix can be assigned according the minimum distance.
MDSM is presentd in Algorithm 2.

Algorithm 2 Minimum distance to sub-manifold mean
(MDSM)
Input: Training and testing SPD datasets PTr,PTe;
Output: Label of testing data;

1: Obtain the optimal dimensionality and intrinsic mapping
matrix by BSML, [Ms,Ws] = BSML(PTr).

2: Map data onto the intrinsic sub-manifold of size Ms×Ms

as PcTr = WsPTrWT
s ,PcTe = WsPTeWT

s ;
3: Calculate the Riemannian mean of each class,

PcTr1 = argmin
P

∑
Pi∈C1

δ2R(P,Pi)

PcTr2 = argmin
P

∑
Pi∈C2

δ2R(P,Pi)

where C1, C2 are the subsets of PcTr of different classes;
4: Assign a label to the testing data according to the mini-

mum distance to the Riemannian means. For each testing
data Pj ∈ PcTe, we obtain
Label=1 if δR(Pj ,PcTr1) ≤ δR(Pj ,PcTr2)
Label=2 if δR(Pj ,PcTr1) > δR(Pj ,PcTr2);

The second proposed algorithm is named tangent space of
sub-manifold (TSSM). Suppose PR is the Riemannian mean
of all data points, including training and testing data points
on the intrinsic Riemannian sub-manifold. We could obtain
a particular tangent space at the Riemannian mean. Each
point on the intrinsic sub-manifold can be projected onto
the tangent space. Because the tangent space is a Euclidean
vector space, two classical classification algorithms, linear
discriminant analysis (LDA) [33] and support vector machine
(SVM) [34], are applied for classification. According to the
classification used, the two methods are called TSSM+LDA
and TSSM+SVM, respectively. The pseudo-code of TSSM is
given in Algorithm 3.
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Algorithm 3 Tangent space of sub-manifold (TSSM)
Input: Training and testing SPD datasets PTr,PTe;
Output: Label of testing data;

1: Obtain the optimal dimensionality and intrinsic mapping
matrix by BSML, [Ms,Ws] = BSML(PTr).

2: Map data onto the intrinsic sub-manifold of size Ms×Ms

as PcTr = WsPTrWT
s ,PcTe = WsPTeWT

s ;
3: Calculate the Riemannian mean of all data points as

PR = argmin
P

∑
Pi

δ2R(P,Pi) , Pi ∈ PcTr

∪
PcTe;

4: Project data onto the tangent space
sTr= upper(P− 1

2

R Log(PcTr)P
− 1

2

R ) ∈ R
Ms(Ms+1)

2

sTe= upper(P− 1
2

R Log(PcTe)P
− 1

2

R ) ∈ R
Ms(Ms+1)

2 ;
5: Apply the LDA or SVM classifier to the tangent space

and for si ∈ sTe,
Label=LDA(si,sTr) or Label=SVM(si,sTr).

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
algorithms on EEG signals from motor imagery BCIs.

A. Experimental Setup

Data description: The n-channel EEG data used in the
experiments are BCI competition IV motor imagery data [35]
and our in-house experimental data. The major experimental
configurations of these two datasets are shown in Table I.

1) Dataset IIa of BCI competition IV was recorded from
9 subjects who performed four types of motor imagery
tasks (right hand, left hand, foot and tongue imagined
movements). The recorded signals consisted of 22 EEG
channels with channel configuration as shown in Fig. 4
(a). The protocol of the experiment was given as follows.
In the initial time (0− 2s), a short acoustic warning tone
was presented. After two seconds (2s), a cue in the form
of an arrow pointing left, right, down or up appeared and
remained on the screen from 2s to 3.25s. This prompted
the subjects to perform the motor imagery task until the
fixation cross disappears from the screen at 6s. Lastly,
there was a short break that lasted for 1.5s. The paradigm
is illustrated in Fig. 4 (c). The time interval of processed
data was restricted to the time segment between 3.75s
and 5.75s during which the subject performed the mental
tasks. For each subject and mental task, there were 72
training and 72 testing trials. Thus, the overall number of
training/testing trials for each subject was 288/288. The
EEG signals were sampled with a sampling rate 250Hz
and filtered by a 8− 30Hz bandpass filter to analyze the
µ and β rhythms.

2) Our in-house EEG data were recorded from 12 subjects
with 64 EEG channels. The configuration of the 64 EEG
channels is shown in Fig. 4 (b). The protocol of the in-
house experiment was given as follows. Two mental tasks,
i.e., left/right hand imaged movements, were required
to perform the in-house BCIs. In the initial interval
(0−2.25s), the screen remained blank. A cross appeared
on the screen to attract the subject’s visual fixation from
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Figure 4. The configuration of EEG sensors. a) BCI competition IV (#1,#2,#3
are the positions of EOG channels.); b) In-house BCI system ; c) timing
scheme of the paradigm for dataset II of competition IV; d) timing scheme
of the paradigm for in-house dataset.

2.25s to 4s. From 4s to 8s, a left/right arrow cue was
shown and the subject performed the required task. The
paradigm is illustrated in Fig. 4 (d). The time interval
for the processed data was restricted to the time segment
between 5s and 7s. For each subject and each task, there
were 117 training and testing trials. The overall number
of training/testing trials for each subject was 234/234.
The EEG signals were sampled with a sampling rate of
250Hz and filtered by a 8− 30Hz bandpass filter.

Algorithms evaluated: We evaluated the proposed algo-
rithms, MDSM, TSSM+LDA and TSSM+SVM against the
following four competing algorithms.

1) CSP+LDA: CSP [36] followed by LDA [33] was applied
for motor imagery classification.

2) CSP+SVM: CSP [36] followed by SVM [34] was applied
for motor imagery classification.

3) MDRM: Minimum distance to Riemannian mean was
used for classification on the high-dimensional Rieman-
nian manifold [5].

4) TS+LDA: LDA was applied to high-dimensional tangent
space for classification [5].

Parameter setting: The number of selected variables of
TS+LDA was set to 10 as suggested in [5]. The number
of CSP spatial filter was set to 8 as suggested in [36]. The
kernel of SVM was selected as radial basis function (RBF)
and the regularization parameter of SVM was set as 0.8 [34].
Electrooculography (EOG) artifact was removed by linear
regression method [37] as Y(t) = X(t)−KU(t), where X(t) ∈
R22×L is the EOG-contaminated EEG signal, Y(t) ∈ R22×L

is EEG signal with EOG removed, U(t) ∈ R3×L is the EOG
signal and K ∈ R22×3 is weighting matrix which is estimated
by K = CXUC−1

UU [38], where CXU is the cross-covariance
matrix of X(t) and U(t), and CUU is the auto-covariance
matrix of the EOG signal U(t).

B. Experimental Results

Three experiments were performed to evaluate the algo-
rithms. Experiment I had a normal setting and Experiment
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Table I
COMPARISON OF THE CONFIGURATIONS OF COMPETITION DATA AND IN-HOUSE BCI DATA.

Dataset IIa of BCI competition IV In-house dataset
Number of subjects 9 12
Number of channels 22 64
Number of classes 4 2

Trials per class 144 234
Number of training/testing trials 288/288 234/234

Sampling rate 250Hz 250Hz
Filter bank bandpass 8-30Hz bandpass 8-30Hz

II had a small sample data setting. Experiment III studied the
computational load of each algorithm.

1) Results of Experiment I: Because cross-validation can
test the model in the training phase and provide insights on
how the model will generalize an independent test dataset, in
this paper, we first tested the performance of the proposed
algorithms on dataset IIa of BCI competition IV and in-
house dataset with a 30-fold cross-validation procedure [5].
No parameters need to be set for the proposed methods. The
training dataset of competition IV and in-house BCI were
randomly divided into 30 subsets of equal size. In each run,
29 subsets were used as training data and a single subset was
used as the validation data.

Because dataset IIa of BCI competition IV is a four-class
problem, in this paper, the one-versus-one strategy was used
to extend the two-class classification algorithms for such a
case. A total of 4(4-1)/2=6 binary classifiers and 6 mapping
matrices Ws were learned from the training dataset. The
simple majority voting scheme was applied to obtain the
final label. Table II presents the accuracies of classification
of all studied algorithms. The proposed methods, MDSM,
TSSM+LDA and TSSM+SVM not only have higher mean
accuracy on classification, but also have lower standard de-
viations on classification accuracy. These lower standard de-
viations indicate that the proposed methods are more robust
against the variance of subjects than the other methods.

Table III shows the results of 30-fold cross-validation on
the in-house dataset. It indicates that the proposed methods
have better performance, e.g., higher mean accuracies and
lower standard deviations, than the others. Since the standard
deviation values are relatively large compared with the dif-
ference between mean performances in Table II and III, it
is necessary to provide statistical significance analysis on the
cross-validation results.

For the results in Table II and III, the analysis of variance
(ANOVA) was first used to show the significant difference of
all studied methods. The paired T-tests were then adopted to
further show statistical significance of difference between the
paired methods (the proposed methods were compared to the
other methods with the same classifier but different the feature
extractor). The one-way ANOVA results for Table II (p =
2.0× 10−11 ≪ 0.05) and Table III (p = 2.1× 10−7 ≪ 0.05)
indicate that all studied methods have statistically significant
difference on classification performance. From the paired T-
test results shown in Table IV, it is clear that the differences
between the proposed methods and the competing methods are
statistically significant.

To obtain a more sophisticated analysis of the 30-fold cross-
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Figure 5. Comparison of the confusion matrices of the studied algorithms on
dataset IIa of BCI competition IV. The diameter (size) of the circle indicates
the magnitude of the corresponding entry in the confusion matrix.

validation experiment, we calculated the confusion matrix of
all studied algorithms corresponding to the results in Table
II. A graphical representation of the confusion matrix is also
shown in Fig. 5. For a fair comparison, we used the average
of the confusion matrices of all subjects. Compared with
TS+LDA and MDRM, MDSM and TSSM have larger diagonal
elements and smaller non-diagonal elements of the confusion
matrix. This result indicates that the proposed methods greatly
improve the classification performance of each class.

The Kappa coefficient is commonly used as a performance
measure for the dataset IIa of competition IV [39]. Kappa
coefficient scales from 0 to 1 linearly onto the range between
random and perfect classification. Kappa coefficient [39] is
defined as

Kappa =
(po − pe)

(1− pe)
(20)

where po is the proportion of observed agreement (equivalent
to the average classification accuracy rate over all the classes),
pe is the proportion of chance expected agreement (defined as
pe = mc×mT

r ×Σ2, where mc and mr represent row vectors
containing elements as the sums of columns and the sums of
the rows of the confusion matrix, respectively, and Σ are the
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Table II
COMPARISON OF CLASSIFICATION ACCURACIES ON DATASET IIA OF BCI COMPETITION IV VIA 30-FOLD CROSS-VALIDATION.

Subject Method
TSSM+LDA TSSM+SVM MDSM TS+LDA[5] MDRM[5] CSP+LDA[33] CSP+SVM[34]

S01 81.8 80 82.2 80.5 77.8 78.3 76.3
S02 62.5 58.7 57.4 51.3 44.1 44.7 50.7
S03 88.8 86.3 84.8 87.5 76.8 82.2 85.1
S04 63.7 68.2 62.2 59.3 54.9 59.1 52.9
S05 62.9 60.3 62.5 45 43.8 39.7 48.8
S06 58.5 59.2 58.5 55.3 47.1 50.1 49.2
S07 86.6 84.4 83.7 82.1 72 81 78.1
S08 85.1 84.0 80.3 84.8 75.2 68.5 77.4
S09 90 89.6 85.1 86.1 76.6 77.4 82.2

mean±std 75.5±13.2 74.5±12.7 73.0±12.3 70.2±17.1 63.2±15.2 64.6±16.6 66.7±15.7

Table III
COMPARISON OF CLASSIFICATION ACCURACIES ON IN-HOUSE DATASET VIA 30-FOLD CROSS-VALIDATION.

Subject Method
TSSM+LDA TSSM+SVM MDSM TS+LDA[5] MDRM[5] CSP+LDA[33] CSP+SVM[34]

A01 100 100 100 98.1 98.1 97.7 100
A02 95.5 93.3 93.3 93.3 94.6 81.6 80.0
A03 100 100 100 100 87.8 95.6 100
A04 94.8 94.8 94.9 86.1 84.6 84.6 90.3
A05 97.7 95.5 95.6 94.0 93.3 85.0 76.6
A06 92.3 94.8 94.8 86.1 81.5 80.7 80.7
A07 90.9 87.8 93.6 89.1 87.2 72.7 84.1
A08 87.8 84.8 93.9 87.2 85.4 81.8 84.1
A09 93.9 93.9 93.9 83.6 81.8 84.1 86.3
A10 84.8 90.9 84.8 83.1 89.1 88.6 88.6
A11 96.9 96.9 100 92.7 92.7 97.7 90.9
A12 84.0 82.6 79.7 75.8 69.5 68.4 80.4

mean±std 93.3±5.4 92.9±5.5 93.7±6.0 89.1±6.8 87.1±7.5 84.9±9.1 86.8±7.5

Table IV
PAIRED T-TEST RESULTS FOR THE PROPOSED METHODS VERSUS COMPETING METHODS BASED ON TABLE II AND TABLE III.

Paired T-test Dataset IIa of BCI competition IV (Table II) In-house dataset (Table III)
p-value p-value

TSSM+LDA vs. TS+LDA * (0.0227) † (0.0015)
TSSM+LDA vs. CSP+LDA † (0.0014) † (0.0013)
TSSM+SVM vs. CSP+SVM †† (5.1× 10−4) ** (0.0057)

MDSM v.s. MDRM †† (1.7× 10−4) † (0.0021)

Note: ∼ nonsignificant, * p ≤ 0.05, ** p ≤ 0.01, † p ≤ 0.005, †† p ≤ 0.001

sums of all elements in the confusion matrix). In Table V,
we also reported the results using the Kappa coefficient as
a performance index for dataset IIa of BCI competition IV.
The performances of the top three winners of competition
IV (1st, 2nd and 3rd of Competition IV) are included in
the comparison. In particular, TSSM+LDA achieved a mean
value of 0.593 and the TSSM+SVM method achieved a mean
value of 0.571. The MDSM method achieved a mean value of
0.568, thus ranking sixth in Table V. Moreover, to show the
robustness against artifacts, the performance of the proposed
algorithms without EOG removal are also presented in Table
V. These results reveal that EOG removal is important for
BCI system to improve classification performance. However,
the proposed methods demonstrate strong robustness against
artifacts. Without EOG removal, they have slight performance
degradation but still produce superior performance.

In Table VI, to enrich the performance comparison, we
presented the classification accuracies of the studied meth-
ods on our in-house BCI dataset. The proposed algorithm,

MDSM, exhibits approximately 4% improvement on classifi-
cation compared to MDRM. Similarly, TSSM+LDA exhibits
approximately 2% improvement compared to TS+LDA. From
the paired T-test results, e.g., MDSM vs. MDRM (p = 0.003),
TSSM+LDA vs. TS+LDA (p = 0.07), TSSM+SVM vs.
CSP+SVM (p = 0.014) and TSSM+LDA vs. CSP+LDA
(p = 0.015), it is clear that only the performance improvement
of TSSM+LDA vs. TS+LDA is not statistically significant.
However, the p = 0.07 is very close to 0.05. Based on
the results for the competition and in-house datasets, we can
conclude that the proposed methods significantly improved
classification performance compared to the other algorithms.
These improvements might be attributable in part to the ability
of the intrinsic sub-manifold learned by BSML to capture
the major geometric information of the original manifold
and relief of the overfitting problem to some extent by the
dimensionality reduction.

We also compared the dimensionality reduction perfor-
mance of BSML and the state-of-the-art manifold learning

jack
线条
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Table V
COMPARISON OF THE KAPPA VALUES OF DIFFERENT METHODS ON DATASET IIA OF BCI COMPETITION IV FOR PREDICTION ON TEST DATA.

Method Mean Kappa Subject
S01 S02 S03 S04 S05 S06 S07 S08 S09

TSSM+LDA 0.593 0.77 0.33 0.77 0.51 0.35 0.36 0.71 0.72 0.83
TSSM+LDA(without EOG removal) 0.584 0.76 0.32 0.77 0.50 0.34 0.35 0.70 0.70 0.81

TSSM+SVM 0.571 0.70 0.32 0.75 0.54 0.32 0.34 0.70 0.69 0.77
1st of Competition IV 0.570 0.68 0.42 0.75 0.48 0.40 0.27 0.77 0.75 0.61

TS+LDA[5] 0.567 0.74 0.38 0.72 0.50 0.26 0.34 0.69 0.71 0.76
MDSM 0.568 0.72 0.34 0.74 0.49 0.34 0.34 0.71 0.70 0.73

TSSM+SVM(without EOG removal) 0.564 0.70 0.31 0.74 0.54 0.31 0.34 0.69 0.68 0.75
MDSM(without EOG removal) 0.562 0.71 0.33 0.73 0.49 0.34 0.33 0.70 0.70 0.73

MDRM[5] 0.521 0.75 0.37 0.66 0.53 0.29 0.27 0.56 0.58 0.68
2nd of Competition IV 0.520 0.69 0.34 0.71 0.44 0.16 0.21 0.66 0.73 0.69
3rd of Competition IV 0.310 0.38 0.18 0.48 0.33 0.07 0.14 0.29 0.49 0.44

Table VI
COMPARISION OF CLASSIFICATION ACCURACIES ON IN-HOUSE BCI DATASET FOR PREDICTION ON TEST DATA.

Method Mean accuracy Subject
A01 A02 A03 A04 A05 A06 A07 A08 A09 A10 A11 A12

TSSM+SVM 90.0 100 98.7 100 95.1 98.7 87.0 92.9 87.7 83.9 78.5 78.9 78.6
TSSM+LDA 89.8 100 100 100 95.1 98.7 87.0 92.9 94.7 83.9 73.2 70.1 82.0

MDSM 90.3 100 96.1 97.5 91.9 98.7 100 89.4 85.9 87.5 78.5 80.7 77.7
TS+LDA[5] 88.0 100 97.4 100 88.7 97.4 85.5 91.2 84.2 82.1 71.4 75.4 79.4
MDRM[5] 86.6 100 96.1 95.0 85.4 93.5 85.4 87.7 80.7 82.1 75.0 71.9 76.9

CSP+LDA[33] 82.6 96.4 96.1 100 74.1 96.1 83.8 82.4 68.4 75.0 66.0 73.6 79.4
CSP+SVM[34] 85.2 98.2 93.5 100 77.4 98.7 87.0 89.4 78.9 82.1 67.8 70.1 79.4

algorithms. The 2-dimensional embeddings learned by Isomap,
LLE, CSP and BSML are shown in Fig. 6. The distributions
of learned features in Fig. 6 clearly indicate that the features
learned by BSML have high separability, supporting the pos-
sibility of high classification performance for BSML based
methods.

The proposed BSML method can be considered as an
extension of CSP. The BSML also learned spatial patterns
form the experimental covariance matrices. In Fig. 7, the
topographic maps of spatial filters learned by the CSP and
BSML are shown. We can see that the spatial filters learned by
BSML have larger difference between electrodes C3 and C4,
which cover the area dedicated to the right-hand and left-hand
imagery movements. The major difference between BSML
and CSP is the Riemannian distance used in BSML. Since
Riemannian distance can better represents the relationship of
covariance matrices, hence, the BSML is possible to learn a
more precise pattern.

2) Results of Experiment II: For many reasons, the training
sets available in BCI applications are frequently small [40].
Reducing the number of training trials required for a specific
task is an important objective in BCI feedback applications.
Dimension reduction is a potential means of alleviating the
problem of small training dataset. We performed experiments
to evaluate the performance of BSML for a small training
dataset. In this experiment, we only used 1/2,1/3 and 1/6
(i.e., 144, 96 and 48 trials) training samples of dataset IIa of
competition IV. The average of 20 repeated experiments versus
different sizes of training datasets are reported in Table VII.
As the training sample size decreased from 1/2 to 1/6, the per-
formances of all algorithms decreased. However, the proposed
methods exhibited smaller performance degradation compared
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Figure 6. Comparison of 2-dimensional embedding learned from Isomap,
LLE, CSP and BSML for subject 1 of dataset IIa of BCI competition IV.
The features corresponding to the right hand and foot imaged movements are
shown in the top row, and the features corresponding to the left hand and
tongue imaged movements are shown in the bottom row.

to the other methods. The paired T-tests of TSSM+LDA vs.
TS+LDA (p = 0.003) and MDSM vs. MDRM (p = 0.0005)
indicates that the performance improvement of the proposed
methods in small sample sizes (1/6 size setting) is statistically
significant.

In Table VIII, the results for the in-house BCI dataset with
only 1/6 of the training samples are shown. In each experiment,
39 trials randomly selected from 234 training trials were used
as the training dataset. The reported results were the average
of 20 repeated experiments. Compared with the results of the
full training sample case in Table VI, MDSM exhibited 13.3%
accuracy degradation, whereas MDRM exhibited 19% accu-
racy degradation. Similarly, TSSM+LDA exhibited approxi-
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Table VII
COMPARISON OF CLASSIFICATION PERFORMANCE ON DATASET IIA OF BCI COMPETITION IV FOR PREDICTION ON TEST DATA WITH TRAINING DATA OF

DIFFERENT SIZES.

Number of sample Method Mean Kappa Subject
S01 S02 S03 S04 S05 S06 S07 S08 S09

1/2 training TSSM+LDA 0.534 0.71 0.28 0.75 0.40 0.30 0.30 0.67 0.61 0.79

sample TSSM+SVM 0.540 0.72 0.32 0.75 0.42 0.26 0.26 0.73 0.61 0.74

(144 trials) MDSM 0.538 0.74 0.28 0.72 0.40 0.32 0.31 0.68 0.65 0.75
TS+LDA[5] 0.512 0.71 0.22 0.72 0.36 0.30 0.34 0.57 0.61 0.78
MDRM[5] 0.490 0.74 0.27 0.63 0.37 0.28 0.30 0.56 0.58 0.68

1/3 training TSSM+LDA 0.513 0.65 0.31 0.74 0.42 0.16 0.24 0.64 0.66 0.76

sample TSSM+SVM 0.515 0.63 0.30 0.77 0.40 0.24 0.29 0.66 0.59 0.72

(96 trials) MDSM 0.519 0.71 0.35 0.72 0.49 0.20 0.22 0.65 0.62 0.67
TS+LDA[5] 0.487 0.66 0.31 0.75 0.38 0.19 0.19 0.55 0.61 0.68
MDRM[5] 0.478 0.68 0.31 0.63 0.50 0.18 0.22 0.53 0.58 0.62

1/6 training TSSM+LDA 0.499 0.62 0.29 0.78 0.34 0.21 0.23 0.62 0.55 0.80

sample TSSM+SVM 0.494 0.63 0.27 0.75 0.37 0.21 0.23 0.63 0.55 0.76

(48 trials) MDSM 0.493 0.66 0.29 0.73 0.42 0.24 0.22 0.61 0.54 0.69
TS+LDA[5] 0.416 0.56 0.17 0.72 0.34 0.20 0.10 0.43 0.46 0.73
MDRM[5] 0.410 0.58 0.21 0.64 0.40 0.12 0.15 0.44 0.49 0.64

CSP BSML

Left hand

Right hand

+

-

0-

(a) (b)

Figure 7. Topographic map of the CSP and BSML methods for the left/right
hand motor imagery data from the subject 3 of dataset IIa of BCI competition
IV. a) the first and last spatial filters of CSP; b) two row of normalization
matrix W corresponding to the largest and smallest eigenvalues on {λj1, j ∈
[1, N ]} .

mately smaller performance degradation, 11.3% , compared
to TS+LDA (15.9%). Compared to the other methods, the
proposed methods also had smaller performance degradation.
Thus, the proposed BSML-based classification methods are
more robust for the small training dataset problem. Similar as
the comparisons in Table IV, all the p-values of paired T-tests
are smaller than 0.05, which reveals that the proposed methods
have significantly high performance in small sample sizes.

3) Results for Experiment III: Finally, to demonstrate the
efficiency of the proposed methods, we compared the compu-
tational loads of the algorithms on the intrinsic sub-manifold
with those of methods on the high-dimensional original man-
ifold. The computational loads contain training and testing
times. As shown in Fig. 8-9, the training times of MDSM and
TSSM were shorter than those of MDRM and TS+LDA on
both BCI competition IV and the in-house datasets because
calculation of the Riemannian mean requires more time for
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Figure 8. Comparison of the training and testing times of the studied
algorithms on dataset IIa of BCI competition IV.
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Figure 9. Comparison of the training and testing time of the studied
algorithms on the in-house dataset.

high-dimensional manifolds. The testing times of MDSM and
TSSM were nearly 5 times shorter than those of MDRM and
TS+LDA.

V. CONCLUSIONS

Dimensionality reduction methods for high-dimensional
Riemannian manifold are important to address the over-fitting
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Table VIII
COMPARISON OF CLASSIFICATION ACCURACIES ON IN-HOUSE BCI DATASET FOR PREDICTION ON TEST DATA WITH 1/6 OF THE TRAINING DATASET.

Method Mean accuracy Subject
A01 A02 A03 A04 A05 A06 A07 A08 A09 A10 A11 A12

TSSM+SVM 76.5 89.4 84.4 100 83.8 79.2 93.5 73.6 70.1 69.6 62.5 59.6 52.1
TSSM+LDA 78.5 94.2 80.1 100 97.4 89.2 53.5 88.9 64.3 72.5 65.3 73.1 63.8

MDSM 77.0 100 87.0 100 93.5 77.9 96.7 64.9 56.1 60.7 53.5 80.7 52.9
TS+LDA[5] 62.1 79.4 77.0 87.5 75.4 64.0 65.8 40.8 46.1 70.3 38.2 56.6 44.7
MDRM[5] 67.6 92.9 81.8 85.0 50.0 55.8 95.1 56.1 56.1 57.1 60.7 57.8 62.3

CSP+LDA[33] 63.3 77.1 48.0 95.0 53.2 61.0 64.5 75.4 57.8 55.3 57.1 50.8 64.1
CSP+SVM[34] 65.7 92.9 63.6 97.5 58.0 61.0 51.6 70.1 49.1 55.3 67.8 59.6 62.3

problem of classification. Most proposed dimension reduction
methods are derived for general manifolds, and few exploit the
structural information of the manifold from which the original
data are sampled. Considering applications with SPD matrices,
a BSML method was proposed to identify a linear sub-
manifold of SPD data by maximizing the preservation of the
Riemannian distance between data points. Three classification
algorithms, i.e., MDSM, TSSM+LDA and TSSM+SVM, were
proposed for the extracted intrinsic sub-manifold. Experimen-
tal results for EEG signals demonstrated that the proposed
BSML can capture useful geometric information of the orig-
inal manifold. The performance of the proposed MDSM and
TSSM methods is superior to those of MDRM and TS+LDA,
particularly when the training dataset is small. The proposed
methods can also be applied to many other pattern recognitions
with input data in the form of SPD matrices. Our future
work will focus on constructing nonlinear mapping, such as
isometric mapping, instead of the bilinear mapping used in
BSML.

APPENDIX

I. APPROXIMATION OF (14)
For the two-class classification problem, the cost function

of (14) is expressed as

∑
Pi∈C1,Pj∈C2

∣∣∣δR(Pi,Pj)− δR(WsPiWs
T ,WsPjWs

T )
∣∣∣

+
∑

Pj∈C1,Pi∈C2

∣∣∣δR(Pi,Pj)− δR(WsPiWs
T ,WsPjWs

T )
∣∣∣

+
∑

Pi,Pj∈C1

∣∣∣δR(Pi,Pj)− δR(WsPiWs
T ,WsPjWs

T )
∣∣∣

+
∑

Pi,Pj∈C2

∣∣∣δR(Pi,Pj)− δR(WsPiWs
T ,WsPjWs

T )
∣∣∣ (21)

where the first two items measure the mapping error among
between-class samples, and the last two items measure the
mapping error among within-class samples. According to the
invariance of linear transformation (7), we have δR(Pi,Pj) ≥
δR(WsPiWs

T ,WsPjWs
T ) for all Ws. Considering the clas-

sification problem, if we can guarantee the between-class
distance, then the compression of within-class variance can
be anticipated. Thus, the last two items can be ignored
in optimization and the optimization problem (14) can be
approximated as

min
Ws

∑
Pi∈C1,Pj∈C2

∣∣∣δR(Pi,Pj)− δR(WsPiWs
T ,WsPjWs

T )
∣∣∣
(22)

As shown in Fig. 10, we regard Pa as the Riemannian
mean of C1 and Pb as Riemannian mean of C2. Applying
the triangular inequalities

δR(Pi,Pb)− δR(Pj ,Pb) ≤ δR(Pi,Pj) ≤ δR(Pi,Pb) + δR(Pj ,Pb)
(23)

we have ∑
Pi∈C1,Pj∈C2

δR(Pi,Pj),

≤ |C2|
∑

Pi∈C1

δR(Pi,Pb) + |C1|
∑

Pj∈C2

δR(Pj ,Pb),

≤ |C1||C2|δR(Pa,Pb) + |C2|
∑

Pi∈C1

δR(Pi,Pa)

+ |C1|
∑

Pj∈C2

δR(Pj ,Pb) (24)

where |C| is the cardinality of set C and∑
Pi∈C1,Pj∈C2

δR(Pi,Pj),

≥ |C2|
∑

Pi∈C1

δR(Pi,Pb)− |C1|
∑

Pj∈C2

δR(Pj ,Pb),

≥ |C1||C2|δR(Pa,Pb)− |C2|
∑

Pi∈C1

δR(Pi,Pa)

− |C1|
∑

Pj∈C2

δR(Pj ,Pb) (25)

In summary,∣∣∣∣∣∣ 1

|C1||C2|
∑

Pi∈C1,Pj∈C2

δR(Pi,Pj)− δR(Pa,Pb)

∣∣∣∣∣∣ ,
≤ 1

|C1|
∑

Pi∈C1

δR(Pi,Pa) +
1

|C2|
∑

Pj∈C2

δR(Pj ,Pb). (26)

If we select P1 = argminPb

∑
Pj∈C2

δ2R(Pj ,Pb) and P2 =

argminPa

∑
Pi∈C1

δ2R(Pi,Pa), in other words, the Riemannian

means of datasets, the between-class distance can be approx-
imated as the distance between the means of two datasets,
particularly when the within-class variance is much smaller
compared with the between-class distance. Thus, for easy
processing, we approximate the optimization problem (14) as

min
Ws

∣∣∣δR(Pa,Pb)− δR(WsPaWs
T ,WsPbWs

T )
∣∣∣. (27)
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Figure 10. Approximation of between-class distance.

II. SOLUTION OF JOINT DIAGONALIZATION

Suppose P1 and P2 are two symmetric positive-definite
matrices. Essentially, the normalization of P1 and P2 is
a problem of joint diagonalization which has been studied
extensively. The joint diagonalization problem can be resolved
by the following procedures:

1) Obtain a whitening matrix by Eigenvalue decomposition
of P1 + P2

(P1 + P2) = UΣUT . (28)

The whitening matrix is given as Ũ = Σ− 1
2 UT . Then, we have

ŨP1Ũ
T
+ ŨP2Ũ

T
= I. (29)

2) Diagonalize of ŨP1Ũ
T

. Because it cannot be ensured
that ŨP1Ũ

T
is a diagonal matrix, we can find a diago-

nalization matrix U1 for ŨP1Ũ
T

by applying eigenvalue
decomposition as

ŨP1Ũ
T
= U1Σ1U1

T . (30)

3) Construct the transformation matrix as W = U1
T Ũ .

It is easy to prove that the transformation matrix W is
subject to WP1WT + WP2WT = I and that both WP1WT

and WP2WT are diagonal matrices.
An alternative method to obtain transformation matrix W

is to apply eigenvalue decomposition to (P1 + P2)
−1P1 as

(P1 + P2)
−1P1 = WΣ1WT . The obtained transformation

matrix can be proven to be identical to the above method as
follows:

P1Ũ
T

U1 = Ũ
−1

U1Σ1 (31)

(P1 + P2)
−1 = Ũ

T
Ũ (32)

Ũ
−1

=(P1 + P2)ŨT (33)

(P1 + P2)
−1P1 = U1

T ŨΣ1U1Ũ
T
= WΣ1WT . (34)
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