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Abstract—In off-line training of motor imagery-based
brain-computer interfaces (BCIs), to enhance the general-
ization performance of the learned classifier, the local in-
formation contained in test data could be used to improve
the performance of motor imagery as well. Further consid-
ering that the covariance matrices of electroencephalogram
(EEG) signal lie on Riemannian manifold, in this paper,
we construct a Riemannian graph to incorporate the in-
formation of training and test data into processing. The
adjacency and weight in Riemannian graph are determined
by the geodesic distance of Riemannian manifold. Then, a
new graph embedding algorithm, called bilinear regularized
locality preserving (BRLP), is derived upon the Riemannian
graph for addressing the problems of high dimensionality
frequently arising in BCIs. With a proposed regularization
term encoding prior information of EEG channels, the BRLP
could obtain more robust performance. Finally, an efficient
classification algorithm based on extreme learning machine
(ELM) is proposed to perform on the tangent space of learned
embedding. Experimental evaluations on the BCI competition
and in-house datasets reveal that the proposed algorithms
could obtain significantly higher performance than many
competition algorithms after using same filter process.

Index Terms—Motor imagery, Riemannian manifold, graph
embedding, regularization, extreme learning machine

I. INTRODUCTION

MOtor imagery is receiving increasing attention in
the field of brain computer interfaces (BCIs) owing

to its advantage of no external stimulations required [1]–
[3]. The trained subject can voluntarily produce electroen-
cephalogram (EEG) signal by imagining movements of
different parts of body [4], [5]. In motor imagery system,
the signal is recorded with multi-channel electrodes which
cover the area of the particular brain activities. One of
the major challenges frequently arising in motor imagery
system is the high dimensionality of EEG signal.

In the processing of motor imagery EEG signal, common
spatial pattern (CSP) is the most effective algorithm for the
feature extraction [6], [7]. The CSP not only extracts the
most discriminative features from motor imagery signal but
also provides the weight knowledge for channel selection
[8]. Taking two classes motor imagery as example, the CSP
is designed to learn the spatial filters that maximize the

X. Xie, Z. L. Yu, Z. Gu and Y. Li are with the College of Automa-
tion Science and Engineering, South China University of Technology,
Guangzhou, China, 510641. E-mail: zlyu@scut.edu.cn

J. Zhang and L. Cen are with School of Information Engineering,
Guangdong University of Technology, Guangzhou 510006, China.

variance for one class of EEG data while minimizing the
variance of the others. The CSP well used in motor imagery
attributes the success to the spatial filters learned from
training data set [9]. In practical motor imagery systems,
one purpose is to reduce the training effort, because the
tedious and time-consuming training process will limit
the application of motor imagery system [10]. However,
small training data will easily result in a worse prediction
model in the supervised learning method. One potential
solution for this problem is semi-supervised learning [11].
It can utilize both training and test data to boost the
algorithmic performance. Many related works, like [12]–
[14], were proposed to classify EEG based on training and
test data in the context of semi-supervised learning. In [12],
a self-training support vector machine (SVM) method was
proposed to use the test data for updating the parameter
of SVM model. In [13], an iterative semi-supervised SVM
method was proposed for channel selection and classifier
training. In [14], a semi-supervised expectation maximiza-
tion (EM) was incorporated into CSP to extract more
effective features. Recently, since graph can characterize
the structure information of training and test data, graph-
based semi-supervised learning method has also received
wide attention [15]. The graph-based model has elegant
mathematical formulation and effectiveness by mining the
intrinsic geometrical structure inferred from both training
and test data.

There are many traditional methods for constructing
graph, e.g., k-nearest neighbor and ε-ball [16]. Both of
these methods compute the relationship of data with Eu-
clidean distance. It is easy to be implemented and applied
in practice. However, if the data samples do not lie on
Euclidean space, the traditional methods cannot guarantee
the connectivity of the whole graph and often lead to
several separated subgraphs, since the Euclidean distance
cannot well characterize the real geometrical relations
among samples [17]. An obvious example is the covariance
matrices of EEG signal, which commonly used in the
learning of spatial filters in CSP. The covariance matrices
with form of symmetric positive definite (SPD) matrices lie
on the Riemannian manifold [18]. Thus, we can construct
a graph based on Riemannian geodesic distance, namely
Riemannian graph, for the processing of the covariance
matrix. Moreover, we expect to address the problem of high
dimensionality with the Riemannian graph.

For the problem of high dimensionality, many graph
embedding algorithms, e.g., locally linear embedding (LLE)
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[19], locality preserving projection [20], Laplacian Eigen-
maps [21], have been proposed to learn a low-dimensional
embedding from the graph. All of them attempt to preserve
the similarities between the vertex pairs on the graph into
embedding. However, the above algorithms need to unfold
input data to vector form that will destroy the structural
information of data, especially for the SPD matrices on
Riemannian manifold. Recently, many bilinear mapping
algorithms have been proposed to identify the spatial and
temporal projection matrices for the EEG signal [22]–[24].
Taking account both of the locality and structure preserving,
we can design a bilinear mapping to seek a low-dimensional
embedding from the Riemannian graph.

Further, we expect to exploit the prior information of
channels to enhance the performance of dimensionality
reduction. The prior information is associated with the
weights of channels. Since some channels are more im-
portant than the others in motor imagery tasks, it is better
to assign different weights for different channels [25].
One potential way to exploit the prior information of
channel is regularization technique [26]. It encodes the
prior information of channels into a regularization term.
As an example, the studies in [26] extended the CSP with
a quadratic regularization term to obtain an efficient spatial
filter. Similarly, in this paper, we extended the bilinear
mapping model on Riemannian graph with a regularization
term, called the bilinear regularized locality preserving
(BRLP).

After alleviating the over-fitting problem by dimension-
ality reduction, we expect to design an advanced classifier
based on the Riemannian geometry for motor imagery
classification. However, since the Riemannian manifold is
not a linear vector space, many classical classifiers that
work on Euclidean space cannot be implemented directly on
Riemannian manifold. One potential solution is to project
all data points on Riemannian manifold into its tangent
space, which is Euclidean space. The relationship of data
points on Riemannian manifold can be faithfully preserved
on the tangent space with Riemannian mean used as tangent
point [27]. Thus, many classical classifiers, like LDA,
SVM, and neural network, can be implemented on such
tangent space. For instance, in [18] and [28], the LDA and
SVM classifiers have been applied on the tangent space
for motor imagery classification, respectively. Although the
training of LDA and SVM is more efficient than that of
neural network, the neural network is more flexible to
handle complex and multivariate data. In this paper, we
applied the neural network on the tangent space for clas-
sification. Furthermore, to alleviate the expensive training
process in the neural network, we used extreme learning
machine (ELM) as a fast learning algorithm for the neural
network, because the hidden node parameters in ELM can
be randomly generated without tuning [29]. The proposed
novel classification algorithm is called extreme learning
machine on tangent space of regularized embedding (ELM-
TS-RE).

The major contributions of this paper are threefold.
1) The Riemannian graph is proposed to model the co-

variance matrices of training and test EEG data. It is a
significant improved version of traditional graph while
the Euclidean distance results in a bias representation
for the space of covariance matrices. In Riemannian
graph, the Riemannian geodesic distance is used to
characterize the neighbor of covariance matrix.

2) A novel BRLP algorithm is proposed to address the
problem of high dimensionality frequently arising in
motor imagery. In BRLP, the regularization term en-
coded the prior information of channels is incorporated
into the objective function of locality preserving. The
main difference of BRLP against others bilinear algo-
rithms is that the BRLP preserves the local structure
of data on Riemannian manifold. The BRLP also
has a low computational cost in practice, since the
optimization function can formulate as an eigenvalue
problem.

3) An ELM-TS-RE algorithm is proposed to classify
motor imagery EEG signal. The ELM-TS-RE includes
a graph-based method for dimensionality reduction,
tangent space mapping for feature extraction and ELM
network for classification. This overall ensemble is
novel and efficient. Moreover, the proposed method
is tested on the dataset IIa of BCI competition IV
and in-house datasets. The experimental results show
that proposed method achieves a higher performance
relative to that achieved by competing methods.

The rest of the paper is organized as follows. In Section
II, we review the space of SPD matrices and spatial filter
of CSP. In Section III, we first introduce the construction
of Riemannian graph. Then we propose BRLP for graph
embedding and ELM-TS-RE for classification. Extensive
experimental results are given in Section IV to show the
effectiveness of the proposed method. Finally, in Section
V, some conclusions are given.

II. RELATED WORKS

In this section, the space of SPD matrices and the spatial
filter of CSP are briefly reviewed to provide some basic
knowledge for the proposed methods.

A. Space of Symmetric Positive Definite Matrices

Figure 1. An illustration of Riemannian manifold and tangent space.
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Denoting the space of symmetric matrices

S(N) =
{

P ∈ RN×N ,P = PT
}

(1)

and the space of positive-definite matrices

P(N) =
{

P ∈ RN×N , uT Pu > 0,∀u ∈ RN
}
, (2)

the space of SPD matrices is defined as

SPD(N) = S(N) ∩ P(N). (3)

The SPD matrices lie on a differentiable Riemannian man-
ifold [30]. Hence, all the mathematical tools defined in
Riemannian geometry can be applied to SPD(N).

The Riemannian distance between two matrices P1,P2 ∈
SPD(N) is defined as

δR(P1,P2) =
∥∥log(P1

−1P2)
∥∥
F
=

[
N∑
i=1

log2ηi

] 1
2

(4)

where ||·||F is the Frobenius norm of a matrix and ηi is the
i-th real eigenvalue of P1

−1P2. The Riemannian distance
δR(P1,P2) is the minimum length of curves connecting
P1 and P2 on Riemannian manifold [31]. The Riemannian
distance poses three fundamental properties of metric space,
i.e., positivity, symmetry and triangle inequality [30].

Tangent space, as a Euclidean space, is an important
space in the analysis of Riemannian manifold. The tangent
space T (N) at P is defined as [27]

T (N) ={
si = upper(P− 1

2LogP(Pi)P− 1
2 ) ∈ RN(N+1)/2

} (5)

where upper(·) operator is to keep the upper triangular
part of matrix and vectorize it. The logarithmic mapping
operator is denoted as LogP(Pi) = P

1
2 log(P− 1

2 PiP− 1
2 )P

1
2 .

The relationship between Riemannian manifold and tangent
space is shown in Fig. 1.

The Riemannian mean of SPD matrices also plays an
important role in classification and is defined as the point
PR ∈ SPD(N), which has a minimum sum of the squared
distances to all SPD matrices in dataset C

PR = arg min
P∈SPD(N)

∑
Pi∈C

δ2R(P,Pi). (6)

B. Spatial Filter for EEG Signal

EEG signal is recorded from multiple channels and
represented as

X(t) = [x(t), ..., x(t+ L− 1)] ∈ RN×L (7)

where N and L denote the number of channels and sampled
points, and x(t) = [x1(t), ..., xN (t)]

T ∈ RN×1 is the
snapshot vector. The spatial covariance matrix of X(t) is
represented by

P(t) =
1

L− 1
X(t)XT (t) ∈ SPD(N). (8)

The well applied spatial filter for EEG signal, CSP, is
learned from the covariance matrices. The CSP aims to find
a spatial filtering matrix W ∈ RN×Ns that maximize the

variance of one-hand trials while minimizing the variance
of the other [6], where Ns is number of the spatial filters.
Generally, the matrix W = [W1,W2] contains two sub-
matrices W1,W2 ∈ RN×Ns

2 , which can be obtained by
maximizing and minimizing the following cost function,
respectively [22]:

J(W̃) =
tr(W̃

T
C1W̃)

tr(W̃
T

C2W̃)
(9)

where W̃ ∈ RN×Ns
2 and the Cl is the arithmetic mean of

covariance matrices of EEG signals belonging to class l.
The optimal matrix W is composed of the eigenvectors of
C−1

2 C1, which correspond to its first Ns

2 largest and Ns

2
smallest eigenvalues. The i-th column wi ∈ RN×1 of W is
called a spatial filter for feature extraction.

III. PROPOSED METHODS

In this section, we propose the BRLP to learn the low-
dimensional embedding from Riemannian graph and the
ELM-TS-RE for classification on the learned embedding.

A. Riemannian Graph

To learn low-dimensional embedding of Riemannian
manifold, a Riemannian graph is firstly constructed for the
data points on the Riemannian manifold. The Riemannian
graph GR = (V, E) is composed of vertices V and edges
E with weight uij . Thus, the constructions of adjacency
and weights are two main steps for Riemannian graph.
First, the adjacency of Riemannian graph is designed by
k-nearest neighbors. For data point Pi ∈ V , we select its
neighbors according to Riemannian geodesic distance. This
key step ensures that the neighbors of Riemannian graph
can really reflect the local structure of data on Riemannian
manifold. Secondly, the weight between two adjacent points
Pi,Pj ∈ V is given by [32]

uij =

e
−d2ij

2σ2 if Pi and Pj are neighbors,
0 otherwise

where dij = δR(Pi,Pj) and the parameter σ is a scaling
factor.

B. Bilinear Regularized Locality Preserving on Rieman-
nian Graph

A bilinear mapping V ∈ RM×N with constraint VVT =
IM is used to learn a low-dimensional embedding (M < N )
from the Riemannian graph. The learned low-dimensional
embedding Pe = VPVT ∈ SPD(M) is expected to pre-
serve the local structure of Riemannian graph and impose
the prior knowledge of EEG channels.

A reasonable bilinear mapping respecting the locality
preserving can be obtained by solving the following ob-
jective function:

min
V

|C|∑
i,j=1

∥ VPiVT − VPjVT ∥2Fuij . (10)
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Figure 2. The graphical illustration of the ELM-TS-RE algorithm. The overall ensemble includes a graph-based approach for dimensionality reduction,
tangent space (TS) mapping for feature extraction, and extreme learning machine (ELM) for classification.

It attempts to ensure that if Pi and Pj in high-dimensional
manifold are ”close” then VPiVT and VPjVT in low-
dimensional embedding are ”close” as well. There is no
closed-form solution for (10). In this paper, we employ
an alternating iterative strategy to learn the bilinear map-
ping matrix in (10). The matrix V is firstly initialized as
V0 = [IM , 0], and the new optimal Vt+1 of the (t+ 1)th-
iteration is learned from the following eigen-decomposition
problem [33], [34] once Vt is given

Vt+1 = argmin
V

tr(VLVT ) (11)

where L =
|C|∑

i,j=1

(Pi − Pj)Vt
T Vt(Pi − Pj)

Tuij .

In order to impose the prior knowledge of EEG channels,
we further introduce a regularization term to (11). The new
method can be formulated as

Vt+1 = argmin
V

tr(VLVT + λR(V)) (12)

where λ represents the regularization parameter and R(V)
is the regularization term. Since the regularization term
with quadratic form could lead to computational effi-
ciency, in this paper, we define the regularized term as
R(V) = VDwVT , where the diagonal matrix Dw encodes
the penalty on each EEG channel. The regularized term is
used to penalize solutions that do not satisfy a given chan-
nels prior. Similarly, we also employ an iterative strategy
to learn mapping matrix V in (12). The pseudo-code of the
proposed BRLP algorithm is shown in Algorithm 1.

The problem remaining here is how to design the penalty
matrix Dw. Since the spatial filter of CSP carries the
channel weighting information and is widely used for
channel selection [26], in this paper, we recommend setting
the penalty level of channel according to the information
contained in the CSP spatial filters. The penalty matrix is
given as the inverse of the average absolute values of Ns

normalized spatial filters,

Dw = diag(
1

Ns

Ns∑
i=1

| wi

∥ wi ∥
|)−1. (13)

It is clear that the higher absolute value of filter weight
leads to less penalty on the corresponding channel.

Algorithm 1 Bilinear Regularized Locality Preserving
(BRLP)
Input: Given SPD matrix set C with samples Pi ∈

RN×N , i = 1, · · · , |C|, dimensions of embedding M ,
iterative number Nite, stop threshold τ ;

1: Construct a Riemannian graph GR over all samples
based on Riemannian geodesic distances (Sec. III-A);

2: Calculate the penalty matrix Dw by (13);
3: Initialize: V0 = [IM , 0];
4: for t=1:1:(Nite), do;

Calculate the matrix L in (11);
Obtain mapping matrix Vt+1 ∈ RM×N by (12);
If ∥ Vt+1 − Vt ∥2F≤ τ

break;
end If

end for
5: Construct M × M dimensional embedding Pei =

VoptPiVopt
T , i = 1, · · · , |C| where Vopt is convergent

matrix in step 4;
Output: Learned SPD matrix samples on low dimen-

sional embedding Pei ∈ RM×M , i = 1, · · · , |C|.

C. Classification on Low-Dimensional Embedding

In this paper, we designed an ELM classifier performed
on the tangent space of learning regularized embedding.
Fig. 2 shows the graphical illustration of the ELM-TS-
RE. It includes a graph-based method for dimensionality
reduction, tangent space mapping for feature extraction
and ELM network for classification. The proposed method
enhances the existing methods [18] from two perspectives.
Firstly, the local characteristics of Riemannian manifold
and prior knowledge of EEG channels are condensed in
a low-dimensional embedding to avoid over-fitting. Sec-
ondary, the ELM classifier is more flexible and powerful
than LDA classifier.

To keep this paper self-contained, we present the ELM
classifier [29] as follows. We design a three-layer ELM
network, which includes input, hidden and output layer.
The output weights β ∈ RNh×No between hidden layer
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and output layer are obtained by

min
β

1

2
||β||2 + θ

2

|C|∑
i=1

||hT (si)β − yi||2 (14)

where θ is a parameter to balance the loss and L2 regular-
ization term in ELM, si ∈ R

M(M+1)
2 ×1 is the constructed

feature vector of data points on tangent space of low-
dimensional embedding, and h(si) ∈ RNh×1 is output
vector of the hidden layer with Nh neural elements. The
output yi ∈ R1×No is the label vector corresponding to si
(No is the number of output neurons). The key principle of
ELM [35] is that the parameters (a, b) in sigmoid mapping
function h(si) = 1/(1 + exp(−aT si − b)) are randomly
generated within the range of [−1, 1]. The pseudo-code of
proposed classification method is given in Algorithm 2.

Algorithm 2 ELM on Tangent Space of Regularized Em-
bedding (ELM-TS-RE)
Input: Training and test SPD datasets PTr,PTe, label

of training data yTr, dimensions of embedding M ,
iterative number Nite, stop threshold τ , number of
hidden neuron Nh, coefficient θ;

Output: Label of test data;
1: Obtain the optimal mapping matrix by BRLP,

[V] =BRLP(PTr,M,Nite, τ);
2: Map data onto the learned embedding with the size of

M ×M as PeTr = VPTrVT ,PeTe = VPTeVT ;
3: Calculate the Riemannian mean of all data points as

PR = argmin
P

∑
Pi

δ2R(P,Pi) , Pi ∈ PeTr

∪
PeTe;

4: Project data onto the tangent space of learned embed-
ding
sTr= upper(P− 1

2

R Log(PeTr)P
− 1

2

R ) ∈ R
M(M+1)

2 ×1

sTe= upper(P− 1
2

R Log(PeTe)P
− 1

2

R ) ∈ R
M(M+1)

2 ×1;
5: Train the output weight β of ELM network by feeding

sTr, yTr into (14);
6: Calculate the label of test data based on sTe:

yTe =sign(h(sTe)β);

IV. NUMERICAL RESULTS

A. Experimental Setup

Data Description: the dataset IIa of BCI competition IV
and in-house motor imagery datasets were used to validate
the effectiveness of the proposed methods.

1) Dataset IIa of BCI competition IV was recorded from
9 subjects (S01-S09) who performed four types of
motor imagery tasks (right hand, left hand, foot and
tongue imagined movements). The recorded signals
consisted of 22 EEG channels. The protocol of the
experiment was given as follows. In the initial time
(0− 2s), a short acoustic warning tone was presented.
After two seconds (2s), a cue in the form of an arrow
pointing left, right, down or up appeared and remained
on the screen from 2s to 3.25s. This prompted the
subjects to perform the motor imagery task until the

(a) 

Blank Cue

Fixation
Cue

Motor 
Break

0 1 2 3 4 5 6 7 8

  cross imagery

Fixation
  cross

0 1 2 3 4 5 6 7 8

(s)

(s)

(b)

Figure 3. Timing scheme of the paradigm for motor imagery task. a)
dataset II of competition IV; b) in-house datasets.

fixation cross disappears from the screen at 6s. Lastly,
there was a short break that lasted for 1.5s. The
paradigm is illustrated in Fig. 3 (a). The time interval
of processed data was restricted to the time segment
between 3.75s and 5.75s during which the subject
performed the mental tasks. For each subject and
mental task, there were 72 training and 72 test trials.
Thus, the overall number of training/test trials for each
subject was 288/288. The EEG signals were sampled
with a sampling rate 250Hz and filtered by an 8−30Hz
bandpass filter to analyze the µ and β rhythms.

2) Our in-house EEG data was recorded from 9 subjects
(A01-A09) with 64 EEG channels. The protocol of the
in-house experiment was given as follows. Two mental
tasks, i.e., left/right hand imaged movements, were
required to perform the in-house BCIs. In the initial
interval (0−2.25s), the screen remained blank. A cross
appeared on the screen to attract the subject’s visual
fixation from 2.25s to 4s. From 4s to 8s, a left/right
arrow cue was shown and the subject performed the
required task. The paradigm is illustrated in Fig. 3 (b).
The time interval for the processed data was restricted
to the time segment between 5s and 7s. For each
subject and each task, there were 117 training and
test trials. The overall number of training/test trials
for each subject was 234/234. The EEG signals were
sampled with a sampling rate of 250Hz and filtered
by an 8− 30Hz bandpass filter.

Algorithms Evaluated: The BRLP was compared
against four competing algorithms: LLE, Isomap, CSP and
bilinear locality preserving (BLP). The ELM-TS-RE was
compared against five competing classification algorithms:
LDA-CSP, ELM-CSP, LDA-TS, ELM-TS and ELM-TS-E.

1) LLE: a classical dimensionality reduction algorithm
based on locality preserving [19];

2) Isomap: a classical dimensionality reduction algorithm
based on isometric mapping [36];

3) CSP: a benchmark feature extraction algorithm in
motor imagery [6];

4) BLP: bilinear locality preserving on Riemannian
graph, as shown in (11);

5) LDA-CSP: the CSP followed by LDA classifier [6];
6) ELM-CSP: the CSP followed by ELM classifier;
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7) LDA-TS: LDA classifier performed on tangent space
of Riemannian manifold [18];

8) ELM-TS: ELM classifier performed on tangent space
of Riemannian manifold;

9) ELM-TS-E: ELM classifier performed on tangent
space of embedding learned by BLP, without channel
information;

Moreover, the proposed ELM-TS-RE algorithm also
compared with the top 3 winner methods on dataset IIa
of competition IV:

1) 1st winner: it used the filter bank CSP (FBCSP) for
feature extraction and used the naive Bayes classifier
for classification. FBCSP adaptively selected the fea-
ture from nine frequency sub-bands based on mutual
information [37];

2) 2nd winner: it used standard CSP for feature extraction
and Fisher’s LDA for feature selection. The Bayesian
classifier was used for classification. And the EEG
signal was filtered by 8-30Hz bandpass filter [38];

3) 3rd winner: it used a recursive channel elimination
method for channel selection and standard CSP for
feature extraction. The ensemble SVM classifier was
used for classification. And the EEG signal was filtered
by 8-25Hz bandpass filter [38].

Parameters Setting: The number of nearest neighbors in
LLE was set as 12 as suggested by [19]. The Isomap learned
an embedding by k = 6 nearest neighbors [36]. The number
of CSP spatial filter was set to be 8 as suggested in [39].
According to the parameter analysis in Experiment III, we
set maximum iterative number Nite = 20 and threshold τ =
10−3 as iterative stop criterion. In BRLP, we empirically
set the number of selected filters Ns = 6, the number of
nearest neighbor k = 40 and regularization parameter λ =
0.15. For the ELM-TS-RE algorithm, we set the number of
hidden neuron Nh = 2000 and the balance factor θ = 0.001
in ELM classifier. Moreover, the intrinsic dimensionality M
in ELM-TS-RE was determined by 10-fold cross-validation,
e.g., {10, 10, 10, 16, 10, 16, 10, 16, 16} for the dataset IIa of
BCI competition IV and {10, 10, 10, 10, 10, 14, 8, 8, 12} for
in-house datasets, respectively.

B. Results and Discussion

To assess the proposed methods, we designed three
experiments in the following. Experiment I analyzed the
implementation of BRLP algorithm. Experiment II eval-
uated the classification performance of the ELM-TS-RE
algorithm. Experiment III discussed the convergence and
parameter sensitivity for the proposed algorithms.

1) Results of Experiment I: In this experiment, in order
to show how BRLP work, we first depicted the distribution
of learned features by the BRLP, and then we showed the
topographic maps of mapping matrix learned by the BRLP.

Fig. 4 shows the distribution of the two most discrimina-
tive features learned by BRLP, BLP, CSP, Isomap and LLE.
The BRLP has larger between-class scatter and smaller
within-class scatter against competing methods in left/right-
hand motor imagery BCI. To obtain a more sophisticated

analysis, a discriminative index was further used to evaluate
features in Fig. 4. The pointwise biserial correlation coef-
ficient [40] was commonly used for discriminative index
as

r =

√
N1N2

N1 +N2

mean{fi|li = 1} −mean{fi|li = 2}
std{fi|li = 1, 2}

(15)

where N1 and N2 are the numbers of variables belong to
the left-hand and right-hand classes, fi and li are the value
and class label of the i-th variable, respectively. r2-value
is equal to the square of r, and larger r2-value indicates
higher separability of features. In Fig. 5, the r2-values of
the two most discriminative features learned by BRLP are
larger than the competing methods.
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Figure 4. The distribution of two most discriminative features learned by
Isomap, LLE, CSP, BLP and BRLP for the left/right hand motor imagery
data of A01.
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Figure 5. The r2-values of the two most discriminative features learned
by Isomap, LLE, CSP, BLP and BRLP, corresponding to Fig. 4.

Further, we also carried out an experiment to show the
effect of test data on the performance of BRLP algorithm.
In BRLP algorithm, the training and test data were used
to construct a Riemannian graph. The local information
of training and test data can be preserved in the learning
of low-dimensional embedding. High performance was ob-
tained by performing classification on the low-dimensional
embedding with local information of training and test data.
However, if the Riemannian graph was only constructed
with the training data, the local information of the test data
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will be ignored. It will easily result in low classification
performance especially in the case of small training data. As
shown in Fig. 6, whatever full or partial training data used,
the features learned with training and test data have higher
separability than the features only learned with training
data.
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Figure 6. The distribution of two most discriminative features learned
with and without test data by BRLP algorithm. a) BRLP with test data
(full training data); b) BRLP without test data (full training data); c) BRLP
with test data (half training data); d) BRLP without test data (half training
data).

The mapping matrix of BRLP can be regarded as spatial
filters for EEG signal. Fig. 7 shows the topographic maps
of spatial filters learned by BRLP, BLP and CSP for the
left/right hand motor imagery BCI. It is clear that large
spatial filter coefficients of BRLP concentrate around the
electrodes C3 and C4, which cover the area dedicated
to the right-hand and left-hand imagery movements. In
addition, comparing the spatial filters learned by BRLP
and BLP in Fig. 7, we can observe that BRLP has higher
spatial filter coefficients than BLP in C3 and C4, because
the regularization term in BRLP utilizes the channel prior
information from CSP filters.

2) Results of Experiment II: In this section, we further
tested the classification performance of the proposed ELM-
TS-RE algorithm on the dataset IIa of BCI competition
IV and in-house datasets with 10-fold cross-validation
procedure, since the cross-validation can evaluate the model
in the training sets and provide insights on how the model
will generalize an independent test sets. Moreover, the
cross-validation was also used to determine the intrinsic
dimensionality M in BRLP. In the 10-fold cross-validation
procedure, the training set was partitioned into 10 subsets
with equal size. In each run, 9 subsets were used for
learning while a remaining subset was used for validation.

Fig. 8 (a) shows the results of cross-validation on the
dataset IIa of BCI competition IV. Since dataset IIa was
collected from a four-class experiment, the one-versus-
one strategy was used to extend the binary classification
of ELM-TS-RE to perform the classification. The Kappa
coefficient was adopted to evaluate the classification per-
formance, since the Kappa coefficient takes into account
the misclassification of multi-class problem [41]. Fig. 8 (b)
shows the results of cross-validation on in-house datasets.
Since it is a two-class problem, for simplicity, the clas-
sification accuracy was used as performance measure for
in-house datasets. As shown in Fig. 8 (a) and (b), the
proposed ELM-TS-RE has higher performance than the
five competing classification algorithms, e.g., ELM-TS-E,
ELM-TS, LDA-TS, ELM-CSP and LDA-CSP. Especially
for the comparison between ELM-TS-RE and ELM-TS-
E, because the ELM-TS-RE utilized the channel prior
information leads to higher performance than ELM-TS-E,
we can infer that high performance of proposed ELM-TS-
RE might be attributable in part to the ability of embedding
learned by BRLP to exploit prior knowledge of channel.

An interesting result in Fig. 8 (a) is that the standard
deviation values are relatively large compared with the
difference between the mean values. In fact, the key reason
of high variance is the significant difference between the
subjects, where some subjects (S01, S03, S07, S08 and
S09) can perform better motor imagery task and the others
(S02, S04, S05 and S06) are poor in motor imagery. On the
other hand, because all in-house subjects are well-training
for motor-imagery, the ratio of standard deviation versus
the difference between the mean values in Fig. 8 (b) are
not as high as those in Fig. 8 (a). In addition, we also
provided significance analysis for cross-validation results in
Fig. 8. From the sign test results in Table I, it is clear that
the differences between ELM-TS-RE and other competing
methods are statistically significant.

Lastly, we compared the proposed ELM-TS-RE with
the winner of the dataset IIa of BCI competition. The
performances of the top 3 winners (1st,2nd and 3rd) were
included in the comparison. As shown in Table II, the
ELM-TS-RE consistently outperformed the 2nd and 3rd

winner methods for all the 9 subjects, when a bandpass
filter (8-30Hz or 8-25Hz) was used for processing. A sign
test revealed that the performance of the ELM-TS-RE
method was significantly higher than 2nd winner method
(p < 0.005) and 3rd winner method (p < 0.005). However,
compared with the 1st winner method, the proposed ELM-
TS-RE did not have higher performance for all subjects.
There was no significant difference between the ELM-TS-
RE and the 1st winner method (p = 0.765). The reason
was that the different filters were used in processing for
the 1st winner method. The 1st winner method used filter
bank and different frequency information was selected for
different subject. The proposed ELM-TS-RE only used a
fixed 8-30Hz bandpass filter for all subjects.

For fair comparison, we proposed a filter bank ELM-
TS-RE algorithm, which had same filter process as the 1st

winner method. The graphical illustration of filter bank
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Figure 7. Topographic maps of the spatial filters learned by BRLP, BLP and CSP methods for the left/right hand motor imagery data from the 9
subjects of dataset IIa of BCI competition IV.
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Figure 8. Comparison of classification performance of all studied algorithms on the motor imagery dataset via 10-fold cross-validation. a) dataset IIa
of BCI competition IV; b) in-house datasets.

Table I
A SIGN TEST RESULTS FOR THE PROPOSED METHOD VERSUS COMPETING METHODS ON THE CROSS-VALIDATION RESULTS OF FIG. 8.

Competition Dataset (Fig. 8 (a)) In-house dataset (Fig. 8 (b))
p-value p-value

ELM-TS-RE vs. ELM-TS-E ∗ ∗∗
ELM-TS-RE vs. ELM-TS † ∗∗
ELM-TS-RE vs. LDA-TS † ∗∗

ELM-TS-RE vs. ELM-CSP † ∗∗
ELM-TS-RE vs. LDA-CSP † ∗∗

Note: ∼ nonsignificant, * p ≤ 0.05, ** p ≤ 0.01, † p ≤ 0.005
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Table II
COMPARISON OF THE KAPPA VALUES BETWEEN PROPOSED ALGORITHM AND WINNER RESULTS ON DATASET IIA OF BCI COMPETITION IV FOR

PREDICTION OF TEST DATA.

Method Mean subject
Kappa S01 S02 S03 S04 S05 S06 S07 S08 S09

Filter Bank ELM-TS-RE 0.628 0.77 0.43 0.78 0.52 0.51 0.32 0.78 0.78 0.77
ELM-TS-RE 0.584 0.76 0.36 0.76 0.48 0.35 0.31 0.75 0.74 0.75

1st 0.570 0.68 0.42 0.75 0.48 0.40 0.27 0.77 0.75 0.61
2nd 0.520 0.69 0.34 0.71 0.44 0.16 0.21 0.66 0.73 0.69
3rd 0.310 0.38 0.18 0.48 0.33 0.07 0.14 0.29 0.49 0.44

Table III
A SIGN TEST FOR THE RESULTS OF TABLE II.

ELM-TS-RE Filter Bank ELM-TS-RE
1st ∼ †
2nd † †
3rd † †
Note: ∼ nonsignificant, * p ≤ 0.05, ** p ≤ 0.01, † p ≤ 0.005

ELM-TS-RE was shown in Fig. 9. Compared with the
ELM-TS-RE, the filter bank ELM-TS-RE added two steps
in processing of EEG data: a filter bank comprising of mul-
tiple bandpass filters, and feature selection via mutual in-
formation based best individual feature (MIBIF) algorithm
[37]. From the comparison results in Table II, it is clear
that the filter bank ELM-TS-RE consistently outperformed
the 1st winner method for all the 9 subjects after using
same filter bank process. A sign test indicated that the
performance improvement of the filter bank ELM-TS-RE
was statistically significant (p < 0.005). However, the filter
bank ELM-TS-RE was more computationally expensive
compared to ELM-TS-RE, as it performed multiple BRLP
algorithms corresponding to multiple frequency sub-bands.
We showed the significant test results for the proposed
methods versus winner methods in Table III. It can be seen
that the proposed methods could obtain significantly higher
performance than winner methods after using same filter
process.
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36-40Hz
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MIBIF

MIBIF

ELM
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.
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.
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Figure 9. The graphical illustration of filter bank ELM-TS-RE.

3) Results of Experiment III: In this experiment, we
studied the convergence and parameter setting problems of
the proposed methods.

Fig. 10 shows the convergence of mapping matrix Vt

learned from BRLP. We plotted nine convergence curves
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Figure 10. Convergence curves of mapping matrix obtained by executing
the BRLP on dataset IIa of BCI competition IV within 40 iterations.

corresponding to nine subjects of dataset IIa of BCI com-
petition IV. The error of convergence is defined as

Error =∥ Vt − Vt−1 ∥2F . (16)

With increasing of the number of iteration steps, all the
nine executions of BRLP algorithm converged within 20
iteration steps. To achieve a trade-off between performance
and efficiency, the maximum iterative number Nite was
empirically set as 20 and threshold τ was empirically set
as 10−3.

Sensitivity analysis of the parameters, like the number
of selected filters Ns and regularization parameter λ for
BRLP, the number of hidden neuron Nh and balance factor
θ for ELM-TS-RE, were also carried out in this section.

Firstly, we studied the effects of the parameters λ and Ns

on the performance of BRLP. Fig. 11 shows the r2-values
of the most discriminative features learned by BRLP under
the different λ and Ns. If λ is too large, the effects of
locality preserving term in (12) will be weaken and the
optimization (12) will focus more on the regularization
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Figure 11. The r2-values of the most discriminative features learned by
BRLP under the different λ and Ns for subject S03.

term. In this case, the BRLP will extract features with
low separability because of lacking local characteristics of
Riemannian manifold. With the decreasing value of λ, the
higher r2-value is obtained while the number of selected
filters Ns is correctly set. However, if the λ is too small,
the optimization (12) will ignore the prior information of
EEG channels contained in regularization term. It is clear
that the correct setting of λ and Ns play an important role
in application of BRLP.

We also provided analysis on how Ns affect the channel
information in BRLP. Fig. 12 shows the average absolute

channel weights 1
Ns

Ns∑
i=1

| wi

∥wi∥ | versus Ns for the left/right

hand motor imagery BCI. With a small value of Ns (like
Ns = 2, 4), high weights on C3 and C4, which play a key
role in the right-hand and left-hand imagery movements,
could be observed. Unfortunately, we could find large
weight on other inessential channel like CP3. In large
values of Ns (Ns = 20, 22) are set, although the weights on
C3 and C4 channel will be smaller, the effect of inessential
channel CP3 is reduced. Consequently, the values of Ns

should be determined by achieving a trade-off between
essential and inessential channels. As shown in the Fig. 11,
we can obtain highest r2-value with (Ns, λ) = (6, 0.15).

Secondly, we analyzed the effects of the number of
hidden neuron Nh and balance factor θ on the performance
of ELM-TS-RE. Fig. 13 shows the accuracy of ELM-TS-
RE versus Nh with different θ. The ELM network will
suffer from over-fitting problem in the case of large number
of hidden neurons. Appropriate θ should be selected to
balance the loss function and L2 regularization term in
the ELM. As shown in Fig. 13, with the decreasing value
of θ, the relative effect of L2 regularization term in ELM
increases and the over-fitting problem is alleviated. We can
obtain highest performance of ELM on both training and
testing set with θ = 0.001. Furthermore, if θ is too small
(θ = 0.0003), the performance of ELM becomes lower
because of under-fitting problem.

V. CONCLUSIONS

Some EEG channels are more important than others in
the processing of motor imagery BCI. In this paper, we
proposed a bilinear locality preserving mapping method
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left/right hand motor imagery data of subject S03. a) the wave of channel
weight under different Ns; b) visualization of channel weight.
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Figure 13. Classification accuracy of ELM-TS-RE versus number of
neuron (Nh) under the different θ.

on the Riemannian graph with a channel prior information
from CSP filters to learn a low-dimensional embedding.
Furthermore, we also proposed a classification algorithm by
executing ELM classifier on the tangent space of learned
embedding. The experimental results on the dataset IIa of
BCI competition IV and in-house datasets show the high
performance of the proposed methods.
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